GUTS BV - small intestine-on-a-chip and advanced computational analysis for compound and protein screening

02:113 years ago

GUTS BV is a contract research organization offering its 3-dimensional state-of-the-art small intestinal in vitro model in combination with custom computational analysis approaches. The small intestinal model was developed during Dr. Paul Jochems PhD research at Utrecht University in the group of Prof. Roos Masereeuw. In comparison to the current gold standard (Transwell model), they show improvement in cell differentiation (all major specialized cell types present), physiological structure (3D tube- and villi-like structures) and a functional epithelial barrier. After acquiring experimental data from this model computational analysis approaches are used to score and compare measured compounds for all tested biological parameters at once. The combined effort of improved in vitro modelling and data analysis is believed to result in an enhanced preclinical predictability.

GUTS BV was nominated for the Venture Challenge 2021 for their development of an intestinal model combined with advanced computational analysis for protein and chemical compound screening.

Research papers:
https://www.sciencedirect.com/science/article/pii/S0887233318307811
https://www.mdpi.com/2072-6643/12/9/2782/htm
https://www.nature.com/articles/s41538-020-00082-z

LinkedIn: https://www.linkedin.com/company/71016128/

Related

Five simple tricks for making your own video for TPI.tv
TPI.tv videos

Five simple tricks for making your own video for TPI.tv

This video shows you how to make a video yourself. It's really not that difficult! See also https://tpi.tv/how-to-submit for additional information.
01:234 years ago
EURL ECVAM
Projects and initiatives
HealthInnovationPolicy

EURL ECVAM

The EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) promotes and facilitates the use of non-animal methods in testing and research. It validates, disseminates and shares knowledge on the 3Rs (Replacement, Reduction and Refinement of animal experiments). In this video, Raffaella Corvi explains what EURL ECVAM does in the field of safety testing of chemicals while reducing laboratory animal testing. Watch the accessible version of the video here (https://audiovisual.ec.europa.eu/en/video/I-230374). ©European Union, 2021
02:3357 days ago
Stem cell derived Vessels-on-Chip to study brain disorders
Innovation examples
HealthIn vitroOrgan-on-Chip

Stem cell derived Vessels-on-Chip to study brain disorders

Dennis Nahon is a PhD candidate in the Department of Anatomy and Embryology at the Leiden University Medical Center. In his research, under supervision of Dr. Valeria Orlova (https://www.orlovalab.com/) and Prof. Dr. Christine Mummery, he aims to mimic a blood vessel in the brain by combining different stem cell derived cell types, in a 3D Vessel-on-Chip model. Here, an example of these in vitro blood vessels is shown in which certain brain cells known as astrocytes (in white) interact with the blood vessels (in red). This model paves the way for investigating brain vessels outside the human body, while reducing the need for animal models.
01:532 months ago
 From 2D hiPSC culture to developing a 3D vessel-on-chip
Innovation examples
In vitroOrgan-on-Chip

From 2D hiPSC culture to developing a 3D vessel-on-chip

Theano Tsikari is a 2nd year PhD student at the Orlova group at LUMC. As part of the LymphChip consortium, her project focuses on the development of immunocompetent organ-on-chip models of the cardiovascular system, and especially the integration of tissue-resident macrophages and lymphatic vasculature using human induced pluripotent stem cells. In this video, you can follow her as she presents you the backbone of her project, a 3D hiPSC-derived vessel-on-chip model, that has been previously developed in the Orlova group and can be employed for the generation of advanced in vitro models of vascular diseases.
01:292 months ago